Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been recently recognized as highly efficient photothermal therapy (PTT) agents. Here, we demonstrate, for the first time to our knowledge, dose and laser intensity dependent PTT potential of small, spherical, 3-aminopropyltrimethoxysilane coated cationic superparamagnetic iron oxide nanoparticles (APTMS@SPIONs) in aqueous solutions upon irradiation at 795 nm. Indocyanine green (ICG) which has been recently used for photodynamic therapy (PDT), was loaded to APTMS@SPIONs to improve the stability of ICG and to achieve an effective mild PTT and PDT (dual therapy) combination for synergistic therapeutic effect on cancer cells via a single laser treatment in the near infrared (NIR). Neither APTMS@SPIONs nor ICG-APTMS@SPIONs showed dark toxicity on MCF7 breast and HT29 colon cancer cell lines. A safe laser procedure was determined as 10 min irradiation at 795 nm with 1.8 W/cm2 of laser intensity, at which APTMS@SPION did not cause a significant cell death. However, free ICG reduced cell viability at and above 10 μg/ml under these conditions along with generation of reactive oxygen species (ROS), more effectively in MCF7. ICG-APTMS@SPION treated cells showed 2-fold increase in ROS generation and near complete cell death at and below 5 μg/ml ICG dose, even in less sensitive HT29 cells after a single laser treatment at NIR, which would be safe for the healthy tissue and provide a longer penetration depth. Besides, both components can be utilized for diagnosis and the overall composition may be used for optical-image guided phototherapy in the NIR region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.