Abstract

Intraurethral injection of indocyanine green (ICG; Akorn, Lake Forest, IL) and visualization under near-infrared (NIR) light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery. Patients were scheduled to undergo robot-assisted laparoscopic sacrocolpopexy. Before the robotic surgery started, the tip of a 6-F ureteral catheter was inserted into the ureteral orifice. Twenty-five milligrams of ICG was dissolved in 10-mL of sterile water and injected through the open catheter. The same procedure was repeated on the opposite side. The ICG reversibly stained the inside lining of the ureter by binding to proteins on urothelial layer. During the course of robotic surgery, the NIR laser on the da Vinci Si surgical robot (Intuitive Surgical, Inc, Sunnyvale, CA) was used to excite ICG molecules, and infrared emission was captured by the da Vinci filtered lens system and electronically converted to green color. Thus, the ureter fluoresced green, which allowed its definitive identification throughout the entire case. In all cases of >10 patients, we were able to visualize bilateral ureters with this technology, even though there was some variation in brightness that depended on the depth of the ureter from the peritoneal surface. For example, in a morbidly obese patient, the ureters were not as bright green. There were no intraoperative or postoperative adverse effects attributable to ICG administration for up to 2 months of observation. In our experience, this novel method of intraurethral ICG injection was helpful to identify the entire course of ureter and allowed a safe approach to tissues that were adjacent to the urinary tract. The advantage of our technique is that it requires the insertion of just the tip of ureteral catheter. Despite our limited cohort of patients, our findings are consistent with previous reports of the excellent safety profile of intravenous and intrabiliary ICG. Intraurethral injection of ICG and visualization under NIR light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.