Abstract

Unique perceptual skills and abnormalities in perception have been extensively demonstrated in those with autism for many perceptual domains, accounting, at least in part, for some of the main symptoms. Several new hypotheses suggest that perceptual representations in autism are unrefined, appear less constrained by exposure and regularities of the environment, and rely more on actual concrete input. Consistent with these emerging views, a bottom-up, data-driven fashion of processing has been suggested to account for the atypical perception in autism. It is yet unclear, however, whether reduced effects of prior knowledge and top-down information, or rather reduced noise in the sensory input, account for the often-reported bottom-up mode of processing in autism. We show that neither is sufficiently supported. Instead, we demonstrate clear differences between autistics and neurotypicals in how incoming input is weighted against prior knowledge and experience in determining the final percept. Importantly, the findings tap central differences in perception between those with and without autism that are consistent across identified sub-clusters within each group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call