Abstract

Among critically ill adults, randomized trials have not found oxygenation targets to affect outcomes overall. Whether the effects of oxygenation targets differ based on an individual's characteristics is unknown. To determine whether an individual's characteristics modify the effect of lower vs higher peripheral oxygenation-saturation (Spo2) targets on mortality. A machine learning model to predict the effect of treatment with a lower vs higher Spo2 target on mortality for individual patients was derived in the Pragmatic Investigation of Optimal Oxygen Targets (PILOT) trial and externally validated in the Intensive Care Unit Randomized Trial Comparing Two Approaches to Oxygen Therapy (ICU-ROX) trial. Critically ill adults received invasive mechanical ventilation in an intensive care unit (ICU) in the United States between July 2018 and August 2021 for PILOT (n = 1682) and in 21 ICUs in Australia and New Zealand between September 2015 and May 2018 for ICU-ROX (n = 965). Randomization to a lower vs higher Spo2 target group. 28-Day mortality. In the ICU-ROX validation cohort, the predicted effect of treatment with a lower vs higher Spo2 target for individual patients ranged from a 27.2% absolute reduction to a 34.4% absolute increase in 28-day mortality. For example, patients predicted to benefit from a lower Spo2 target had a higher prevalence of acute brain injury, whereas patients predicted to benefit from a higher Spo2 target had a higher prevalence of sepsis and abnormally elevated vital signs. Patients predicted to benefit from a lower Spo2 target experienced lower mortality when randomized to the lower Spo2 group, whereas patients predicted to benefit from a higher Spo2 target experienced lower mortality when randomized to the higher Spo2 group (likelihood ratio test for effect modification P = .02). The use of a Spo2 target predicted to be best for each patient, instead of the randomized Spo2 target, would have reduced the absolute overall mortality by 6.4% (95% CI, 1.9%-10.9%). Oxygenation targets that are individualized using machine learning analyses of randomized trials may reduce mortality for critically ill adults. A prospective trial evaluating the use of individualized oxygenation targets is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.