Abstract
To facilitate shared decision-making for patients with knee osteoarthritis (OA), we aimed at building clinically applicable models to predict the individual change in pain intensity (VAS scale 0-100), knee-related quality of life (QoL) (KOOS QoL score 0-100) and walking speed (m/sec) immediately following two educational and 12 supervised exercise therapy sessions. We used data from patients with knee OA from the 'Good Life with osteoArthritis in Denmark' (GLA:D®) registry (n=6,767). From 51 patient characteristics, we selected the best performing variables to predict the outcomes via random forest regression. We evaluated model performance via R2. Lastly, we validated and compared our models with the average improvements via the mean differences in an independent validation data set from the GLA:D® registry (n=2,896) collected 1year later than the data used to build the models. Validating our models including the best performing variables yielded R2s of 0.34 for pain intensity, 0.18 for knee-related QoL, and 0.07 for walking speed. The absolute mean differences between model predictions and the true outcomes were 14.65mm, 10.32 points, and 0.14m/s, respectively, and similar to the absolute mean differences of 17.64, 11.28 and 0.14 observed when we subtracted the average improvements from the true outcomes. Despite including 51 potential predictors, we were unable to predict changes in individuals' pain intensity, knee-related QoL and walking speed with clinically relevant greater precision than the respective group average outcomes. Therefore, average prediction values can be used to inform patients about expected outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.