Abstract
Humans have evolved along with the millions of microorganisms that populate their bodies. These microbes (1014) outnumber human cells by 10 to 1 and account for 3 × 106 genes, more than ten times the 25,000 human genes. This microbial metagenome acts as our “other genome” and like our own genes, is unique to the individual. Recent international efforts such as the Human Microbiome Project (HMP) and the MetaHIT Project have helped catalog these microbial genomes using culture-independent, high-throughput, next-generation sequencing. This manuscript will describe recent efforts to define microbial diversity in the female reproductive tract because of the impact that microbial function has on reproductive efficiency. In this review, we will discuss current evidence that microbial communities are critical for maintaining reproductive health and how perturbations of microbial community structures can impact reproductive health from the aspect of infection, reproductive cyclicity, pregnancy, and disease states. Investigations of the human microbiome are propelling interventional strategies from treating medical populations to treating individual patients. In particular, we highlight how understanding and defining microbial community structures in different disease and physiological states have lead to the discovery of biomarkers and, more importantly, the development and implementation of microbial intervention strategies (probiotics) into modern day medicine. Finally this review will conclude with a literature summary of the effectiveness of microbial intervention strategies that have been implemented in animal and human models of disease and the potential for integrating these microbial intervention strategies into standard clinical practice.
Highlights
Fecal-based microbiome and metabolite signatures could provide unique opportunities for radically changing the detection of chronic inflammation through identification of modifiable dietary risk factors, and through recognition of high-risk populations within whom endoscopic efforts can be focused. These biomarkers could be used to identify populations at risk for disease associated with inflammation as well as to monitor response of diet, probiotic, antibiotic, or other preventive interventions. It is evident based on the expansive literature available to date, that an individual’s microbiome serves as more than just a bacterial presence that resides in our body’s natural orifices
These microbial environments are composed of numerous communities that function to create a symbiotic host-microbe relationship through regulation of the immune system and healthy tissue physiology
Microbial community dynamics may fluctuate in species diversity and richness but can maintain a “normal” microbial community due to redundancy among specific strains
Summary
Humans have evolved along with the millions of microorganisms that populate their bodies These microbes (1014) outnumber human cells by 10 to 1 and account for 3×106 genes, more than ten times the 25,000 human genes. This microbial metagenome acts as our “other genome” and like our own genes, is unique to the individual Recent international efforts such as the Human Microbiome Project (HMP) and the MetaHIT Project have helped catalog these microbial genomes using culture-independent, high-throughput, next-generation sequencing. This manuscript will describe recent efforts to define microbial diversity in the female reproductive tract because of the impact that microbial function has on reproductive efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.