Abstract

BackgroundThe clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt disorder. Statistical methods such as machine learning and Cox regression have provided the methodological basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities, including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still hindered by the high heterogeneity of both CHR populations and methodologies applied. MethodsWe systematically reviewed the literature on diagnostic and prognostic models built on Cox regression and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating heterogeneity of methodological approaches and data modality. ResultsA total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against healthy control subjects with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67% and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10% sensitivity. There was a publication bias for prognostic studies yet no other moderator effects. ConclusionsOur results may be driven by substantial clinical and methodological heterogeneity currently affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models for future clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.