Abstract

The early diagnosis of Alzheimer’s Disease (AD) plays a central role in the treatment of AD. Particularly, identifying the preclinical AD (pAD) stage could be crucial for timely treatment in the elderly. However, screening participants with pAD requires a series of psychological and neurological examinations. Thus, an efficient diagnostic tool is needed. Here, we recruited 91 elderly participants and collected 1 min of resting-state electroencephalography data to classify participants as normal aging or diagnosed with pAD. We used deep neural networks (Deep ConvNet, EEGNet, EEG-TCNet, and cascade CRNN) in the within- and cross-subject paradigms for classification and found individual variations of classification accuracy in the cross-subject paradigm. Further, we proposed an individualized diagnostic strategy to identify neurophysiological similarities across participants and the proposed approach considering individual characteristics improved the diagnostic performance by approximately 20%. Our findings suggest that considering individual characteristics would be a breakthrough in diagnosing AD using deep neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.