Abstract
We present a voice conversion (VC) method for a person with an articulation disorder resulting from athetoid cerebral palsy. The movements of such speakers are limited by their athetoid symptoms and their consonants are often unstable or unclear, which makes it difficult for them to communicate. Exemplar-based spectral conversion using Nonnegative Matrix Factorization (NMF) is applied to a voice from a speaker with an articulation disorder. In our conventional work, we used a combined dictionary that was constructed from the source speaker’s vowels and the consonants from a target speaker without articulation disorders in order to preserve the speaker’s individuality. However, this conventional exemplar-based approach needs to use all the training exemplars (frames), and it may cause mismatching of phonemes between input signals and selected exemplars. In order to reduce the mismatching of phoneme alignment, we propose a phoneme-categorized subdictionary and a dictionary selection method using NMF. The effectiveness of this method was confirmed by comparing its effectiveness with that of a conventional Gaussian Mixture Model (GMM)-based and a conventional exemplar-based method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.