Abstract

To measure the variation in human cone photoreceptor packing density across the retina, both within an individual and between individuals with different refractive errors. A high-resolution adaptive optics scanning laser ophthalmoscope was used to image the cones of 11 human eyes. Five subjects with emmetropia and six subjects with myopia were tested (+0.50 to -7.50 D). For each subject, four approximately 10 degrees x 1.5 degrees strips of cone images were obtained. Each strip started at the fovea and proceeded toward the periphery along the four primary meridians. The position of each cone within the sampling windows was digitized manually by the investigator. From these cone counts, the density of the cones was calculated for a set of fixed distances from the fovea at locations throughout the image. Cone photoreceptor packing density decreased from 27,712 cells/mm(2) to 7,070 cells/mm(2) from a retinal eccentricity of 0.30 to 3.40 mm along the superior meridian in five emmetropic eyes. Cone photoreceptor packing density (cells per square millimeter) was significantly lower in myopic eyes than in emmetropic eyes. At a given location, there was considerable individual variation in cone photoreceptor packing density, although more than 20% of the variance could be accounted for by differences in axial length. The results provide a baseline analysis of individual difference in cone photoreceptor packing density in healthy human eyes. As predicted by retinal stretching models, cone photoreceptor packing density is lower in highly myopic eyes than in emmetropic eyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.