Abstract

BackgroundWithin-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses – particularly those produced through mastication of tough food items – may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, allometry may not dominate within-species shape variation, even if it is a driver of evolutionary shape divergence; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues.ResultsWe assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of three species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus.DiscussionOur results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraints act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.

Highlights

  • Much of mammalian diversity is reflected in the morphology of the skull, which caters to the reception of sensory input, accommodates a large brain, and maintains a specialized masticatory apparatus [1]

  • We show that the morphospace of wombat shape behaves as predicted, with low allometry, small eigenvalues of the first principal component, and limited correspondence between Principal Component 1 (PC1) shape variation and actual specimen shapes

  • A small but significant effect of allometry exists when the crania or mandibles of all species are analysed together; plotting cranial and mandible shape against centroid size (Fig. 1) revealed that this is driven by the different shape of the smaller southern hairy-nosed wombats, whereas northern hairy-nosed and common wombats overlap according to size and shape

Read more

Summary

Introduction

Much of mammalian diversity is reflected in the morphology of the skull (the cranium and mandible), which caters to the reception of sensory input, accommodates a large brain, and maintains a specialized masticatory apparatus [1]. Species whose skulls are impacted by strong muscular stresses – those produced through mastication of tough food items – may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual In such cases, allometry may not dominate within-species shape variation, even if it is a driver of evolutionary shape divergence; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and have low eigenvalues

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call