Abstract

BackgroundIndividual differences in cortical gray matter (GM) structure are associated with cognitive function and psychiatric disorders with developmental origins. Identifying when individual differences in cortical structure are established in childhood is critical for understanding the timing of abnormal cortical development associated with neuropsychiatric disorders. MethodsWe studied the development of cortical GM and white matter volume, cortical thickness, and surface area using structural magnetic resonance imaging in two unique cohorts of singleton (121 male and 131 female) and twin (99 male and 83 female) children imaged longitudinally from birth to 6 years. ResultsCortical GM volume increases rapidly in the first year of life, with more gradual growth thereafter. Between ages 1 and 6 years, total surface area expands 29%, while average cortical thickness decreases about 3.5%. In both cohorts, a large portion of individual variation in cortical GM volume (81%–87%) and total surface area (73%–83%) at age 6 years is present by age 1 year. Regional heterogeneity of cortical thickness observed at age 6 is largely in place at age 1. ConclusionsThese findings indicate that individual differences in cortical GM structure are largely established by the end of the first year of life, following a period of rapid postnatal GM growth. This suggests that alterations in GM structure associated with psychiatric disorders with developmental origins may largely arise in the first year of life and that interventions to normalize or mitigate abnormal GM development may need to be targeted to very early childhood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call