Abstract
The importance of studying individual variation in locomotor performance has long been recognized as it may determine the ability of an organism to escape from predators, catch prey or disperse. In ectotherms, locomotor performance is highly influenced by ambient temperature (Ta), yet several studies have showed that individual differences are usually retained across a Ta gradient. Less is known, however, about individual differences in thermal sensitivity of performance, despite the fact that it could represent adaptive sources of phenotypic variation and/or additional substrate for selection to act upon. We quantified swimming and jumping performance in 18 wild-caught tropical clawed frogs (Xenopus tropicalis) across a Ta gradient. Maximum swimming velocity and acceleration were not repeatable and individuals did not differ in how their swimming performance varied across Ta. By contrast, time and distance jumped until exhaustion were repeatable across the Ta gradient, indicating that individuals that perform best at a given Ta also perform best at another Ta. Moreover, thermal sensitivity of jumping endurance significantly differed among individuals, with individuals of high performance at low Ta displaying the highest sensitivity to Ta. Individual differences in terrestrial performance increased with decreasing Ta, which is opposite to results obtained in lizards at the inter-specific and among-individual levels. To verify the generality of these patterns, we need more studies on individual variation in thermal reaction norms for locomotor performance in lizards and frogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.