Abstract

BackgroundMigration is a vital element of the life cycle of many freshwater fish species but is increasingly hampered globally by riverine barriers. Fish passes are a common approach to enable migration past barriers but are often ineffective. More knowledge is required on fish behaviour as they approach barriers such as habitat preferences.MethodsWe evaluate the habitat selection of two upstream migrating fish species, barbel Barbus barbus and grayling Thymallus thymallus, at a hydropower plant in southern Germany, considering individual variation and population trends. Fish were tracked via fine-scale 2D acoustic telemetry in 2018 during their spawning migration. Step selection functions were used to evaluate selection of hydraulic parameters by the fish for a time step of 20 s. Exploratory models were built via model selection for each individual fish, to evaluate the extent of individual variation in model structure. A population model was developed for each species by averaging coefficients from individual models to describe general trends. The extent of individual variation was determined and confidence intervals for the population model coefficients were calculated.ResultsFish varied greatly in individual model structure though common terms were apparent in both species, such as depth, flow velocity, the angular difference between fish and velocity, and the logarithm of the step length. Final population models for barbel included several parameters describing habitat selection and displacement. Barbel selected for faster flows, deeper water, and higher spatial velocity gradients. In addition, they selected to move more with the flow than against. Interactions were also present between habitat parameters, suggesting selection is context dependent. Barbel movement speed also changed with depth, flow velocity and spatial velocity gradient. With grayling, terms often had contrasting effects among individuals and thus general trends could not be distinguished for most terms.ConclusionOur findings demonstrate habitat selection by upstream migrating fish approaching a fish pass and differences in individual selection which may have an impact on barrier management. Step selection functions are a promising approach and can provide useful insight into habitat selection and movement by migrating freshwater fish in an altered river system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call