Abstract

The authors assessed the diagnostic value of brain tissue oxygen tension (PbrO2), microvascular oxygen saturation (SmvO2), cytochrome oxidase redox level (Cyt a+a3 oxidation), and cerebral energy metabolite concentrations in detecting acute critical impairment of cerebral energy homeostasis. Each single parameter as well as derived multimodal indices (arteriovenous difference in oxygen content [AVDO2], cerebral metabolic rate for oxygen [CMRO2], fractional microvascular oxygen extraction [OEF]) were investigated during controlled variation of global cerebral perfusion using a cisternal infusion technique in 16 rabbits. The objective of this study was to determine whether acute changes between normal, moderately, and critically reduced cerebral perfusion as well as frank ischemia defined by local cortical blood flow (lcoBF), brain electrical activity (BEA), and brain stem vasomotor control can be reliably identified by SmvO2, PbrO2, Cyt a+a3 oxidation, or energy metabolites (glutamate, lactate/pyruvate ratio). PbrO2, SmvO2, and Cyt a+a3 oxidation, but not cerebral perfusion pressure, were closely linked to lcoBF and BEA and allowed discrimination between normal, moderately reduced, and critically reduced cerebral perfusion (P < 0.01). Glutamate concentrations and the lactate/pyruvate ratio varied significantly only between moderately reduced cerebral perfusion and frank ischemia (complete loss of BEA and brain stem vasomotor control). Therefore, PbrO2, SmvO2, and Cyt a+a3 oxidation, but not glutamate and the lactate/pyruvate ratio, reliably predict the transition from moderately to critically reduced cerebral perfusion with impending energy failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.