Abstract
Single-walled carbon nanotubes were oxidized by a technique previously developed for the oxidation of graphite to graphite oxide (GO). This process involves treatment with concentrated H(2)SO(4) containing (NH(4))(2)S(2)O(8) and P(2)O(5), followed by H(2)SO(4) and KMnO(4). Oxidation results in complete exfoliation of nanotube ropes to yield individual oxidized tubes that are 40-500 nm long. The C:O:H atomic ratio of vacuum-dried oxidized nanotubes is approximately 2.7:1.0:1.2. XPS and IR spectra show evidence for surface O-H, C=O, and COOH groups. The oxidized nanotubes slowly form viscous hydrogels at unusually low concentration (>or=0.3 wt %), and this behavior is attributed to the formation of a hydrogen-bonded nanotube network. The oxidized tubes bind readily to amine-coated surfaces, on which they adsorb as smooth and dense monolayer films. Thin films of the oxidized nanotubes show ohmic current-voltage behavior, with resistivities in the range of 0.2-0.5 Omega-cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.