Abstract

Individual-level resting-state networks (RSNs) based on resting-state fMRI (rs-fMRI) are of great interest due to evidence that network dysfunction may underlie some diseases. Most current rs-fMRI analyses use linear correlation. Since correlation is a bivariate measure of association, it discards most of the information contained in the spatial variation of the thousands of hemodynamic signals within the voxels in a given brain region. Subject-specific functional RSNs using typical rs-fMRI data, are therefore dominated by indirect connections and loss of spatial information and can only deliver reliable connectivity after group averaging. While bivariate partial correlation can rule out indirect connections, it results in connectivity that is too sparse due to lack of sensitivity. We have developed a method that uses all the spatial variation information in a given parcel by employing a multivariate information-theoretic association measure based on canonical correlations. Our method, multivariate conditional mutual information (mvCMI) reliably constructs single-subject connectivity estimates showing mostly direct connections. Averaging across subjects is not needed. The method is applied to Human Connectome Project data and compared to diffusion MRI. The results are far superior to those obtained by correlation and partial correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.