Abstract

Predictive processing theories, which model the brain as a "prediction machine", explain a wide range of cognitive functions, including learning, perception and action. Furthermore, it is increasingly accepted that aberrant prediction tendencies play a crucial role in psychiatric disorders. Given this explanatory value for clinical psychiatry, prediction tendencies are often implicitly conceptualized as individual traits or as tendencies that generalize across situations. As this has not yet explicitly been shown, in the current study, we quantify to what extent the individual tendency to anticipate sensory features of high probability generalizes across modalities. Using magnetoencephalography (MEG), we recorded brain activity while participants were presented with a sequence of four different (either visual or auditory) stimuli, which changed according to predefined transitional probabilities of two entropy levels: ordered vs. random. Our results show that, on a group-level, under conditions of low entropy, stimulus features of high probability are preactivated in the auditory but not in the visual modality. Crucially, the magnitude of the individual tendency to predict sensory events seems not to correlate between the two modalities. Furthermore, reliability statistics indicate poor internal consistency, suggesting that the measures from the different modalities are unlikely to reflect a single, common cognitive process. In sum, our findings suggest that quantification and interpretation of individual prediction tendencies cannot be generalized across modalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call