Abstract
Interactive partially observable Markov decision processes (I-POMDP) provide a formal framework for planning for a self-interested agent in multiagent settings. An agent operating in a multiagent environment must deliberate about the actions that other agents may take and the effect these actions have on the environment and the rewards it receives. Traditional I-POMDPs model this dependence on the actions of other agents using joint action and model spaces. Therefore, the solution complexity grows exponentially with the number of agents thereby complicating scalability. In this paper, we model and extend anonymity and context-specific independence — problem structures often present in agent populations — for computational gain. We empirically demonstrate the efficiency from exploiting these problem structures by solving a new multiagent problem involving more than 1,000 agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.