Abstract

Polyphenols that are abundant in various organic wastes can inhibit anaerobic degradation of these wastes. This study investigated the effect of the concentration of individual phenolic acids (p-OH benzoic, vanillic, ferulic, sinapic, syringic, and p-coumaric acids) and their mixture on the methane potential of distillery stillage. An increase in phenolic acid concentration adversely affected biogas production and composition, as well as the methane-production rate. The inhibition constants for methane production were 0.5–1.0 g/L of individual phenolic acids and 1.5 g/L of the mixture of these acids. At lower concentrations, the phenolic acids were utilized as a carbon source, but the process was impeded when their concentrations exceeded the threshold value, due to their negative effect on microbial growth. When distillery stillage was spiked with vanillic acid, two-phase methane production was observed. Spiking distillery stillage with vanillic, p-coumaric, syringic, or ferulic acids affected anaerobic digestion the most; 2 g/L of these acids completely inhibited methane production. With 4.0 g/L of all individual phenolic acids, no methane production was observed. As the concentration of these phenolic acids increased from 0.5 to 4.0 g/L, the abundance of methanogenic Archaea, in which acetoclastic methanogens predominated, decreased by about 30 times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call