Abstract

Reciprocal communication between neurons and oligodendrocytes is essential for the generation and localization of myelin, a critical feature of the CNS. In the neocortex, individual oligodendrocytes can myelinate multiple axons; however, the neuronal origin of the myelinated axons has remained undefined and, while largely assumed to be from excitatory pyramidal neurons, it also includes inhibitory interneurons. Thisraises the question of whether individual oligodendrocytes display bias for the class of neurons that they myelinate. Here, we find that different classes of cortical interneurons show distinct patterns ofmyelin distribution starting from the onset of myelination, suggesting that oligodendrocytes can recognize the class identity of individual types of interneurons that they target. Notably, we show that some oligodendrocytes disproportionately myelinate the axons of inhibitory interneurons, whereas others primarily target excitatory axons or show no bias. These results point toward very specific interactions between oligodendrocytes and neurons and raise the interesting question of why myelination is differentially directed toward different neuron types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call