Abstract

Monitoring the immune response in fish over the progression of a disease is traditionally carried out by experimental infection whereby animals are killed at regular intervals and samples taken. We describe here a novel approach to infectiology for salmonid fish where blood samples are collected repeatedly in a small group of PIT-tagged animals. This approach contributes to the reduction of animals used in research and to improved data quality. Two groups of 12 PIT-tagged Atlantic salmon (Salmo salar) were i.p infected with Infectious Salmon Anaemia Virus (ISAV) or culture medium and placed in 1 m3 tanks. Blood samples were collected at 0, 4, 8, 12, 16, 21 and 25 days post infection. The viral load, immune and stress response were determined in individual fish by real-time quantitative PCR (QPCR) on the blood cells, as well as the haematocrit used as an indicator of haemolysis, a clinical consequence of ISAV infection. “In-tank” anaesthesia was used in order to reduce the stress related to chase and netting prior to sampling. The data were analysed using a statistical approach which is novel with respect to its use in fish immunology. The repeated blood collection procedure did not induce stress response as measured by HSP70 and HSP90 gene expression in the un-infected animals. A strong increase in viraemia as well as a significant induction of Mx and γIP gene expression were observed in the infected group. Interleukin 10 was found induced at the later stage of the infection whereas no induction of CD8 or γ IFN could be detected. These results and the advantages of this approach are discussed.

Highlights

  • Fish infectiology studies traditionally rely on the sequential sacrifice of animals and tissue sampling across the kinetics of infection [1,2]

  • We describe a novel design and analysis method for infectiology in Atlantic salmon Salmo salar whereby the level of gene expression in the blood cells was monitored over time from the same individually Passive Integrated Transponders (PIT)-tagged animals following experimental Infection with Infectious Salmon Anaemia Virus (ISAV)

  • Twenty four Atlantic salmon Salmo salar tagged with PIT were provided by Landcatch Natural Selection (Hendrix-Genetics), transported to the Level 3 Biosecurity Aquarium Facility at Marine Scotland and divided into two circular 1 m3 tanks

Read more

Summary

Introduction

Fish infectiology studies traditionally rely on the sequential sacrifice of animals and tissue sampling across the kinetics of infection [1,2]. Is this model costly in terms of the number of fish used, but it is based on the assumption that the animals are well characterised, PLOS ONE | DOI:10.1371/journal.pone.0137767. ISAV Infection in Individual Salmon genetically homogeneous and that the infection is synchronised between individuals. This latter statement applies reasonably well to inbred strains of rodents used for medical research that have a high phenotypic homogeneity [3,4]. As poikilotherms, fish are highly sensitive to environmental or behavioural parameters

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.