Abstract

Wildlife monitoring is an important part of the conservation strategies for certain endangered species. Non-invasive methods are of significant interest because they preserve the studied animal. The study of signs, especially tracks, seems to be a valuable compromise between reliability, simplicity and feasibility. The main objective of this study is to develop and test an algorithm that can identify individual cheetahs based on 3D track modelling using proximal sensing with an off-the-shelf camera. More specifically, we propose a methodological approach allowing the identification of individuals, their sex and their foot position (i.e., left/right and hind/front). In addition, we aim to compare different track recording media: 2D photo and 3D photo models. We sampled 669 tracks from eight semi-captive cheetahs, corresponding to about 20 tracks per foot. We manually placed on each track 25 landmarks: fixed points representing the geometry of an object. We also automatically placed 130 semi-landmarks, landmark allowed to move on the surface, per track on only the 3D models. Geometric morphometrics allowed the measurement of shape variation between tracks, while linear discriminant analysis (LDA) with jack-knife prediction enabled track discrimination using the information from their size and shape. We tested a total of 82 combinations of features in terms of recording medium, landmarks configuration, extracted information and template used. For foot position identification, the best combination correctly identified 98.2% of the tracks. Regarding those results, we also ran an identification algorithm on a dataset containing only one kind of foot position to highlight the differences and mimic an algorithm identifying the foot position first and then an individual factor (here, sex and identity). This led to accuracy of 94.8 and 93.7%, respectively, for sex and individual identification. These tools appear to be effective in discriminating foot position, sex and individual identity from tracks. Future works should focus on automating track segmentation and landmark positioning for ease of use in conservation strategies.

Highlights

  • The first two components of the principal component analysis (PCA) explained between 43.1%

  • The accuracy percentage corresponded to the best accuracy obtained with the minimum principal components (PCs) implemented in linear discriminant analysis (LDA)

  • The results show that foot position prediction accuracy was better in

Read more

Summary

Introduction

Since the 1950s, the intensive use of ecosystems by humans has led to major changes in the biosphere [1]. Mammal populations tend to decline drastically, carnivores [2,3,4]. The cheetah (Acinonyx jubatus), is classified as vulnerable with a total estimated population of 6674 mature individuals according to the International Union for Conservation of Nature’s Red List assessment [5]. This number keeps declining [6]. The majority of wild cheetahs live in southern and eastern

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.