Abstract

A model of individual foraging in social insects as presented that formalises the dynamics of foraging and concentrates on the collective rather than the individual benefit, quantifying the relationships between a colony's foraging area, number of foragers and foraging energy budget and the food sources' rate of arrival, disappearance and capture. A series of experiments, in which a number of prey were offered to colonies of the individually foraging antPachycondyla (ex-Neoponera) apicalis confirm the hypotheses implicit in the model and measured the rates of capture and competition. 60 days observation of 3P. apicalis colonies' foraging activity are summarised and used in conjunction with the model to obtain estimations of the density and rate of arrival of available prey in the foraging area. We examine how a colony's foraging benefit may be influenced by its foraging area, the number of foragers, and the forager/non-forager ratio and show that a colony's jocial structure strongly limits its potential foraging benefit. Within these limits,P. apicalis does not appear to be an optimal forager.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call