Abstract

A Bayesian procedure, which allows consideration of the individual variation in the feed resource allocation pattern, is described and implemented in 2 sire lines of rabbit (Caldes and R). The procedure is based on a hierarchical Bayesian scheme, where the first stage of the model consists of a multiple regression model of feed intake on metabolic BW and BW gain. In a second stage, an animal model was assumed including batch, parity order, litter size, and common environmental litter effects. Animals were reared during the fattening period (from weaning at 32 d of age to 60 d of age) in individual cages on an experimental farm, and were fed ad libitum with a commercial diet. Body weight (g) and cumulative feed intake (g) were recorded weekly. Individual BW gain (g) and average BW (ABW, g) were calculated from these data for each 7-d period. Metabolic BW (g(0.75)) was estimated as ABW(0.75). The number of animals actually measured was 444 and 445 in the Caldes and R lines, respectively. Marginal posterior distributions of the genetic parameters were obtained by Gibbs sampling. Posterior means (posterior SD) for heritabilities for partial coefficients of regression of feed intake on metabolic BW and feed intake on BW gain were estimated to be 0.35 (0.17) and 0.40 (0.17), respectively, in the Caldes line and 0.26 (0.19) and 0.27 (0.14), respectively, in line R. The estimated posterior means (posterior SD) for the proportion of the phenotypic variance due to common litter environmental effects of the same coefficients of regression were respectively, 0.39 (0.14) and 0.28 (0.13) in the Caldes line and 0.44 (0.22) and 0.49 (0.14) in line R. These results suggest that efficiency of use of feed resources could be improved by including these coefficients in an index of selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.