Abstract

Neural mechanisms underlying semantic processing have been extensively studied by using functional magnetic resonance imaging, nevertheless, the individual differences of it are yet to be unveiled. To further our understanding of functional and anatomical brain organization underlying semantic processing to the level of individual humans, we used out-of-scanner language behavioral data, T1, resting-state, and story comprehension task-evoked functional image data in the Human Connectome Project, to investigate individual variability in the task-evoked semantic processing network, and attempted to predict individuals' language skills based on task and intrinsic functional connectivity of highly variable regions, by employing a machine-learning framework. Our findings first confirmed that individual variability in both functional and anatomical markers were heterogeneously distributed throughout the semantic processing network, and that the variability increased towards higher levels in the processing hierarchy. Furthermore, intrinsic functional connectivities among these highly variable regions were found to contribute to predict individual reading decoding abilities. The contributing nodes in the overall network were distributed in the left superior, inferior frontal, and temporo-parietal cortices. Our results suggested that the individual differences of neurobiological markers were heterogeneously distributed in the semantic processing network, and that neurobiological markers of highly variable areas are not only linked to individual variability in language skills, but can predict language skills at the individual level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call