Abstract

Both spatial and temporal context influence our perception of visual stimuli. For instance, both nearby moving stimuli and recently viewed motion can lead to biases in the perceived direction of a moving stimulus. Due to similarities in the spatial tuning properties of these spatial and temporal context-dependent effects, it is often assumed that they share a functional goal in motion processing and arise from common neural mechanisms. However, the psychophysical evidence concerning this assumption is inconsistent. Here we used an individual differences approach to examine the relationship between different effects of contextual modulation on perception. We reasoned that if measures of contextual modulation share a common underlying mechanism, they should exhibit a strong positive correlation across participants. To test this hypothesis, estimates of the direction aftereffect, direction repulsion, the tilt aftereffect and contrast adaptation were obtained from 54 healthy participants. Our results show pronounced interindividual differences in the effect sizes of all four tasks. Furthermore, there was a strong positive correlation between the estimates of the direction aftereffect and direction repulsion. This correlation was also evident in the threshold elevations that accompanied these repulsive biases in perceived direction. While the effects of contrast adaptation did not correlate with any of the other tasks, there was a weak, but non-significant, correlation between the direction and tilt aftereffects. These results provide evidence for common mechanisms underlying the direction aftereffect and direction repulsion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call