Abstract

Behavioral flexibility is an important aspect of self-regulation and involves effectively learning, unlearning, and relearning associations between actions and outcome. Using a probabilistic reversal learning paradigm (PRL), the neural correlates of flexibility have previously been associated with brain regions implicated in cognitive control, including the anterior cingulate cortex (ACC) and lateral prefrontal cortex, and with the nucleus accumbens (Nacc) implicated in reward. The current study on healthy young males (n = 40) extends this previously published work in 3 ways. First we corroborate the involvement of ACC, VLPFC, and DLPFC at the exact moment of behavioral switches. Second, we report increased activation of the dACC and caudate head with increasing number of perseverating errors preceding a behavioral switch. Third, better performance on the task is associated with increased activation of rACC and VLPFC during switching, suggesting that these regions contribute to individual differences in behavioral flexibility. These findings cannot be extended to individual differences in a self-reported measure of self-regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call