Abstract

The auditory system is unique among sensory systems in its ability to phase lock to and precisely follow very fast cycle-by-cycle fluctuations in the phase of sound-driven cochlear vibrations. Yet, the perceptual role of this temporal fine structure (TFS) code is debated. This fundamental gap is attributable to our inability to experimentally manipulate TFS cues without altering other perceptually relevant cues. Here, we circumnavigated this limitation by leveraging individual differences across 200 participants to systematically compare variations in TFS sensitivity to performance in a range of speech perception tasks. TFS sensitivity was assessed through detection of interaural time/phase differences, while speech perception was evaluated by word identification under noise interference. Results suggest that greater TFS sensitivity is not associated with greater masking release from fundamental-frequency or spatial cues, but appears to contribute to resilience against the effects of reverberation. We also found that greater TFS sensitivity is associated with faster response times, indicating reduced listening effort. These findings highlight the perceptual significance of TFS coding for everyday hearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call