Abstract
ABSTRACT Fungi in soil perform beneficial roles that include biological control of soilborne plant pathogens. However, relatively little predictive information is available about the growth and activity of fungal hyphae in soil habitats. A stochastic computer simulation model ("Fungmod") was developed to predict hyphal growth of the biocontrol fungus Trichoderma harzianum ThzID1 in soil. The model simulates a fungal colony as a population of spatially referenced hyphal segments, and is individual-based, in that records of spatial location and branching hierarchy are maintained for individual hyphal nodes. In this way, the entire spatial structure of the fungal colony (hyphal network) can be explicitly reconstructed at any point in time. Also, the soil habitat is modeled as a population of spatially referenced 1-mm(3) soil cells, allowing for the simulation of a spatially heterogeneous environment. Initial hyphal growth parameters were derived from previously published results, and the model was tested against new data derived from image analysis of hyphal biomass accumulation in soil. The ability to predict fungal growth in natural habitats will help to improve the predictability of successful myco-parasitic events in biological control systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.