Abstract

To investigate the individual measures of brain glucose metabolism, neural activity obtained from simultaneous 18[F]FDG PET/MRI, and their association with surgical outcomes in medial temporal lobe epilepsy due to hippocampal sclerosis (mTLE-HS). Thirty-nine unilateral mTLE-HS patients who underwent anterior temporal lobectomy were classified as having completely seizure-free (Engel class IA; n = 22) or non-seizure-free (Engel class IB-IV; n = 17) outcomes at 1year after surgery. Preoperative [18F]FDG PET and functional MRI (fMRI) were obtained from a simultaneous PET/MRI scanner, and individual glucose metabolism and fractional amplitude of low-frequency fluctuation (fALFF) were evaluated by standardizing these with respect to healthy controls. These abnormality measures and clinical data from each patient were incorporated into a machine learning framework (gradient boosting decision tree and logistic regression analysis) to estimate seizure recurrence. The predictive values of features were evaluated by the receiver operating characteristic (ROC) curve in the training and test cohorts. The machine learning classification model showed [18F]FDG PET and fMRI variations in contralateral hippocampal network and age of onset identify unfavorable surgical outcomes effectively. In the validation dataset, the logistic regression model with [18F]FDG PET and fALFF obtained from simultaneous [18F]FDG PET/MRI gained the maximum area under the ROC curve of 0.905 for seizure recurrence, higher than 0.762 with 18[F]-FDG PET, and 0.810 with fALFF alone. Machine learning model suggests individual [18F]FDG PET and fMRI variations in contralateral hippocampal network based on 18[F]-FDG PET/MRI could serve as a potential biomarker of unfavorable surgical outcomes. • Individual [18F]FDG PET and fMRI obtained from preoperative [18F]FDG PET/MR were investigated. • Individual differences were further assessed based on a seizure propagation network. • Machine learning can classify surgical outcomes with 90.5% accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.