Abstract
Micropyramids of zinc-doped indium oxide have been grown by thermal treatments of compacted InN and ZnO powders at temperatures between 700:and 900 degrees C Under argon flow. X-ray diffraction (XRD) measurements and energy-dispersive X-ray (EDS) mappings as well as local EDS spectra enable the identification of rough surfaces of the pyramids with the nucleation of a shell of nanocrystallites with high Zn/In ratio because of the formation of Zn(k)In(2)O(k+3). Some of the pyramids have a truncated tip with pinholes with regular crystalline facets. The apexes of these pinhole's present a hollow core or nanopipe The possible relation of the nanopipes with a dislocation driven growth is discussed. A growth model is proposed from the morphology evolution of the pyramids during the formation of the In(2)O(3)-ZnO (IZO) compound X-ray photoelectron spectroscopy and microscopy (XPS-ESCA) Measurements are used to discuss the Zn incorporation as a dopant and the formation of Zn(k)In(2)O(k+3) ternaries. Cathodoluminescence (CL) in the scanning electron microscopy (SEM) shows a dependence of the luminescence of the microstructures on the Zn concentration and the growth temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.