Abstract
Consistent studies of the quaternary composition are rare as it is impossible to fully determine the quaternary composition by X-ray diffraction or deduce it from that of ternary alloys. In this paper we determined the quaternary composition by wavelength dispersive X-ray spectroscopy of InxAly layers grown by metal organic vapor phase epitaxy. Further insights explaining the peculiarities of InxAlyGa1−x−yN growth in a showerhead reactor were gained by simulations of the precursor decomposition, gas phase adduct formation and indium incorporation including desorption. The measurements and simulations agree very well showing that the indium incorporation in a range from 0% to 2% is limited by desorption which is enhanced by the compressive strain to the relaxed Al0.5Ga0.5N buffer layer as well as indium incorporation into AlN particles forming in the gas phase. Utilizing InxAlyGa1−x−yN layers containing 2% of indium for multiple quantum wells (MQWs), it was possible to show an almost five times higher photoluminescence intensity of InAlGaN MQWs in comparison to AlGaN MQWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.