Abstract

The electronic and optical properties of (InxGa1-x)2O3 alloys are highly tunable, giving rise to a myriad of applications including transparent conductors, transparent electronics, and solar-blind ultraviolet photodetectors. Here, we investigate these properties for a high quality pulsed laser deposited film which possesses a lateral cation composition gradient (0.01 ≤ x ≤ 0.82) and three crystallographic phases (monoclinic, hexagonal, and bixbyite). The optical gaps over this composition range are determined, and only a weak optical gap bowing is found (b = 0.36 eV). The valence band edge evolution along with the change in the fundamental band gap over the composition gradient enables the surface space-charge properties to be probed. This is an important property when considering metal contact formation and heterojunctions for devices. A transition from surface electron accumulation to depletion occurs at x ∼ 0.35 as the film goes from the bixbyite In2O3 phase to the monoclinic β-Ga2O3 phase. The electronic structure of the different phases is investigated by using density functional theory calculations and compared to the valence band X-ray photoemission spectra. Finally, the properties of these alloys, such as the n-type dopability of In2O3 and use of Ga2O3 as a solar-blind UV detector, are understood with respect to other common-cation compound semiconductors in terms of simple chemical trends of the band edge positions and the hydrostatic volume deformation potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.