Abstract
ABSTRACT In this work, solvent extraction of In(III) from sulfate solutions by using mixtures of D2EHPA with octyl alcohol and octanoic acid was investigated. The introduction of the additives into the organic phase was shown to lead to an antagonistic effect thus facilitating efficient indium stripping from the loaded organic phase. The antagonistic effect is significantly higher in the D2EHPA (HR) and octyl alcohol (HA) mixtures. The formation of stable associates between D2EHPA and HA leads to a decrease in the extraction efficiency of indium. In the presence of alcohol, almost complete stripping of indium from a D2EHPA loaded phase can be achieved to produce a strip liquor containing>33.0 g/L In. Based on the analysis of the extraction data and by using nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy of the organic phases, it was concluded that indium extraction with D2EHPA in octyl alcohol is due to the formation of the extracted compound InR3. The equilibrium constant (logK) for indium extraction with solutions of D2EHPA in octyl alcohol was found to be − 0.12 ± 0.05. Extraction systems containing D2EHPA and octyl alcohol can be used to recover indium from various industrial solutions, in particular from the solutions derived from lead-zinc production and from liquid crystal display panel wastes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.