Abstract
Investigations of the system Ba–In–Sn, with the objective to synthesize Ba8In16Sn30 clathrate using Sn and In flux reactions, yielded instead the known BaSn3 compound (P63/mmc; a = 7.228(2) Å, c = 5.469(3) Å) from Sn flux and its In-doped variant BaSn2.8In0.2(1) (a = 7.260(1) Å, c = 5.382(2) Å) from In flux. BaSn3–xInx is the first, and up until now, the only ternary phase containing these elements. Its structure is isomorphic with the Ni3Sn type (Pearson symbol hP8) and is apparently capable of sustaining small variations in the valence electron count by virtue of replacing Sn with the electron poorer In. Electrical resistivity measurements on single-crystals of both undoped and doped phases show different metallic-like behavior, suggesting that neither BaSn3 nor BaSn3–xInx are valence compounds.
Highlights
Due to their potential as thermoelectric materials [1,2], intermetallic clathrates (A8[X,Y]46)—aka type-I; A24[X,Y]136)—aka type-II, where A = alkali or alkaline-earth metal; X and Y = groups 13 and 14 elements) have attracted much attention in recent years
The first and only ternary phase, the solid-solution BaSn3–xInx was identified from a reaction of the elements using excess
While BaSn3 can be readily synthesized from elemental mixtures [11,12,13] or by using Sn flux, BaSn3–xInx with a small
Summary
Our. Crystals 2011, 1 attention was piqued by the fact that the system Ba–Ga–Sn appeared carefully mapped out—for example, the polymorphic Ba8Ga16Sn30 clathrate-I and clathrate-VIII compounds [5,6,7], as well as some other ternary phases like BaGaSn [8], Ba3Ga0.491Sn4.509 [9], and BaGa3.11Sn0.89 [10], have been well characterized—while in the Ba–In–Sn system, no ternary phases have been obtained until now. Being at the border of the typical intermetallic and Zintl phases, both compounds are reported as superconductors below 2.4 K (BaSn3) and 4.4 K (BaSn5), respectively. Electrical resistivity and heat-capacity measurements on single crystals of both phases are reported
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.