Abstract

Indium antimonide photovoltaic cells are specifically designed and fabricated for use in a near-field thermophotovoltaic device demonstrator. The optimum conditions for growing the p-n junction stack of the cell by means of solid-source molecular beam epitaxy are investigated. Then processing of circular micron-sized mesa structures, including passivation of the side walls, is described. The resulting photovoltaic cells, cooled down to around 77 K in order to operate optimally, exhibit excellent performances in the dark and under far-field illumination by thermal sources in the [600–1000] °C temperature range. A short-circuit current beyond 10 μA, open-circuit voltage reaching almost 85 mV, fill factor of 0.64 and electrical power at the maximum power point larger than 0.5 μW are measured for the cell with the largest mesa diameter under the highest illumination. These results demonstrate that these photovoltaic cells will be suitable for measuring a near-field enhancement of the generated electrical power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.