Abstract

ELP3, a core component of Elongator, has been implicated in translational regulation via modification of tRNA at the wobble position. However, the precise biological function of ELP3 in early mouse development has not yet been defined. We here provide evidence that ELP3 plays crucial roles in mouse embryonic stem cell (ESC) maintenance and early development. ELP3 was detected ubiquitously in blastocysts and E10.5 embryos and shown to be increased during ESC differentiation. Depletion of ELP3 in ESC led to aberrant cell cycle progression, along with reduced expression of genes for pluripotency. Interestingly, our analyses revealed that, although the mRNA levels of the genes related to cell cycle were increased, protein levels were diminished in knockdown (KD) ESCs. The data, therefore, suggest that ELP3 function is critical for translational efficiency of the genes. Consistent with a proliferation defect in KD cells, Elp3 knockout (KO) embryos suffered from severe growth retardation and failed to develop beyond E12.5. In conclusion, we have demonstrated that ELP3 plays an indispensable role in ESC survival, differentiation and embryonic development in mouse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call