Abstract
A degenerate sfermionic particle spectrum can escape constraints from flavor physics, and at the same time evade the limits from the direct searches if the degeneracy extends to the gaugino-higgsino sector. Inspired by this, we consider a scenario where all the soft terms have an approximately common mass scale at $M_{\text{SUSY}}$, with splittings $\lesssim \mathcal{O}(10\%)$. As a result, the third generation sfermions have large to maximal (left-right) mixing, the same being the case with charginos and some sectors of the neutralino mass matrix. We study this scenario in the light of discovery of the Higgs boson with mass $\sim$ 125 GeV. We consider constraints from $B$-physics, the anomalous magnetic moment of the muon and the dark matter relic density. We find that a supersymmetric spectrum as light as 600 GeV could be consistent with all current data and also account for the observed anomalous magnetic moment of the muon within $2\sigma$. The neutralino relic density is generally too small to saturate the measured cold dark matter relic density. Direct detection limits from XENON100 and LUX put severe constraints on this scenario which will be conclusively probed by XENONnT experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.