Abstract

The adaptor protein Shc (Src homology and collagen-containing protein) plays an important role in the activation of signalling pathways downstream of RTKs (receptor tyrosine kinases) regulating diverse cellular functions, such as differentiation, adhesion, migration and mitogenesis. Despite being phosphorylated downstream of members of the FGFR (fibroblast growth factor receptor) family, a direct interaction of Shc with this receptor family has not been described to date. Various studies have suggested potential binding sites for the Shc PTB domain (phosphotyrosine-binding domain) and/or the SH2 (Src homology 2) domain on FGFR1, but no interaction of full-length Shc with these sites has been reported in vivo. In the present study, we investigated the importance of the SH2 domain and the PTB domain in recruitment of Shc to FGFR2(IIIc) to characterize the interaction of these two proteins. Confocal microscopy revealed extensive co-localization of Shc with FGFR2. The PTB domain was identified as the critical component of Shc which mediates membrane localization. Results from FLIM (fluorescence lifetime imaging microscopy) revealed that the interaction between Shc and FGFR2 is indirect, suggesting that the adaptor protein forms part of a signalling complex containing the receptor. We identified the non-RTK Src as a protein which potentially mediates the formation of such a ternary complex. Although an interaction between Src and Shc has been described previously, in the present study we implicate the Shc SH2 domain as a novel mediator of this association. The recruitment of Shc to FGFR2 via an indirect mechanism provides new insight into the regulation of protein assembly and activation of various signalling pathways downstream of this RTK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.