Abstract
In this paper, we introduce an indirect pushing based technique for automated micromanipulation of biological cells. In indirect pushing, an optically trapped glass bead pushes a freely diffusing intermediate bead that in turn pushes a freely diffusing target cell towards a desired goal. Some cells can undergo significant changes in their behaviors as a result of direct exposure to a laser beam. Indirect pushing eliminates this problem by minimizing the exposure of the cell to the laser beam. We report an automated feedback planning algorithm that combines three motion maneuvers, namely, push, align, and backup for micromanipulation of cells. We have developed a dynamics based simulation model of indirect pushing dynamics and also identified parameters of measurement noise using physical experiments. We present an optimization-based approach for automated tuning of planner parameters to enhance its robustness. Finally, we have tested the developed planner using our optical tweezers physical setup and carried out a detailed analysis of the experimental results. The developed approach can be utilized in biological experiments for studying collective cell migration by accurately arranging the cells in arrays without exposing them to a laser beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.