Abstract

Increasing loading of terrestrially derived dissolved organic matter tends to enhance bacterioplankton respiration (BR) in boreal estuaries, but knowledge on the mechanisms behind this effect is not complete. We determined the stable isotopic signature of the reactive estuarine dissolved organic carbon (DOC) in the Öre estuary (Baltic Sea) by using the Keeling plot method. The δ13C ratio of the estuarine labile DOC varied from −26.0‰ to −18.7‰ with most values resembling those typical for DOC of coastal phytoplanktonic origin (−18 to −24‰), while being distinctly higher than those of DOC from ter­res­trial sources (−28‰ to −27‰). Furthermore, the δ13C of the respired carbon was positively correlated to DOC concentrations, indicating that carbon of marine origin increasingly dominated the reactive substrates when input of organic matter into the estuary became higher. This suggests that riverine organic matter mainly affects BR indirectly, by providing nutrients that stimulate the production of phytoplankton-derived reactive DOC in the estuary. Thus, riverine derived DOC per se may not be as important for coastal CO2 emissions as previously thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.