Abstract
During the indirect hot stamping process of boron steel, the pre-deformed component undergoes air cooling, one-side-contact cooling and both-side-contact cooling phases successively. The effects of pre-deformation and cooling rate on the phase transformation should be understood before conducting indirect hot stamping experiments of vehicle components. Uniaxial tensile tests of boron steel at RT were carried out to obtain specimens with different pre-strain levels. Then they were heated to 900°C according to the indirect hot stamping process and quenching tests were performed on them at different cooling rates. Metallographic observations were performed on the quenched specimens and their hardness was measured. The results show that the pre-strain at RT has little influence on the phase transformation of boron steel. This is due to the dislocation structure introduced by deformation at RT recovered during the heating process and it is good for the indirect hot stamping. Upper B-pillar parts were first cold pre-formed, and then were heated and hot stamped. The microstructure and hardness results at different locations on the indirect hot stamped components are demonstrated qualified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.