Abstract

Inferring structural information from the intensity of a small-angle scattering (SAS) experiment is an ill-posed inverse problem. Thus, the determination of a solution is in general non-trivial. In this work, the indirect Fourier transform (IFT), which determines the pair distance distribution function from the intensity and hence yields structural information, is discussed within two different statistical inference approaches, namely a frequentist one and a Bayesian one, in order to determine a solution objectively From the frequentist approach the cross-validation method is obtained as a good practical objective function for selecting an IFT solution. Moreover, modern machine learning methods are employed to suppress oscillatory behaviour of the solution, hence extracting only meaningful features of the solution. By comparing the results yielded by the different methods presented here, the reliability of the outcome can be improved and thus the approach should enable more reliable information to be deduced from SAS experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.