Abstract

Nanostructured magnetic composites based on carbon nanotubes (CNTs) and ferromagnetic nanoparticles (FNPs) are of great interest both from an applied and fundamental point of view. In particular, one of the features of CNTs with FNPs is the possibility of magnetic interaction of nanoparticles through the conducting medium of CNTs. For a detailed description of this special type of interaction, which is the indirect exchange coupling, it is necessary to establish the relationship between the macroscopic and microscopic parameters of the physical system. In nanostructured ferromagnets, these dependences are described within the framework of a random magnetization model in which the spin system and, consequently, the main macroscopic characteristics (coercivity, susceptibility, and saturation magnetization) are determined by such microscopic parameters as the exchange interaction constant, the FNP magnetization, the local magnetic anisotropy constant, and the grain size. In this paper, on the basis of the previously obtained microscopic parameters of CNT – FNP nanocomposites, the possibility of obtaining long-range magnetic correlations through the indirect exchange coupling (IEC) between FNP embedded inside a multi-wall CNT (MWCNT) is considered. A model Hamiltonian is used that takes into account the diameter, chirality, chemical potential and spin-orbit interaction (SOI) in the system. The reason for the appearance of a noticeable SOI in CNTs is the curvature of the tubes, which significantly increases the SOI compared to graphene, as well as possible defects and the presence of FNP. IEC is realized by means of p-electrons of the inner wall of the MWCNT. The propagation of the spin susceptibility along the MWCNT axis is calculated and it is shown that a long-range magnetic order is realized under the condition that the chemical potential enters the gap opened by the SOI. Coherence is realized at distances up to micrometers. The proposed approach also made it possible to estimate the energy of the exchange interaction between the FNP belonging to one CNT. The results obtained indicate the prospects for the use of CNT– FNP nanocomposites in carbon spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call