Abstract

Electrocaloric effect is the adiabatic temperature change in a dielectric material when an electric field is applied or removed, and it can be considered as an alternative refrigeration method. Materials with ferroelectric order exhibit large temperature variations in the vicinity of a phase transition, while antiferroelectrics and relaxors may exhibit a negative electrocaloric effect. In this study, the temperature variation in polarization was investigated for epitaxial ferroelectric thin film structures based on PbZrTiO3 materials in simple or complex multilayered structures. We propose the intriguing possibility of a giant negative electrocaloric effect (ΔT = −3.7 K at room temperature and ΔT = −5.5 K at 370 K) in a simple epitaxial Pb(ZrTi)O3 capacitor. Furthermore, it was shown that abnormal temperature variation in polarization is dependent on the non-FE component introduced in a multilayered structure. No significant variation in polarization with temperature was obtained for PZT/STON multilayered structures around room temperature. However, for PZT/BST or PZT/Nb2O5 multilayers, an abnormal temperature variation in polarization was revealed, which was similar to a simple PZT layer. The giant and negative ∆T values were attributed to internal fields and defects formed due to the large depolarization fields when the high polarization of the FE component was not fully compensated either by the electrodes or by the interface with an insulator layer. The presented results make Pb(ZrTi)O3-based structures promising for cooling applications operating near room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call