Abstract

This research investigated persulfate electrosynthesis using a boron-doped diamond anode and a chemical reaction of persulfate in its activated form with an herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D). The first part of this research is dedicated to the influence of the applied current density on the electrosynthesis of persulfate. The first part shows that for a 2 M sulfuric acid, the current efficiency reached 96% for 5 mA/cm2 and dropped to 52% for a higher current density (100 mA cm−2). This fall cannot be explained by mass transfer limitations: an increase in temperature (from 9 to 30 °C) during electrolysis leads to the decomposition of 23% of the persulfate. The second part of this research shows that a quasi-complete degradation of the target herbicide can be reached under controlled operating conditions: (i) a high ratio of initial concentrations [Persulfate]/[2,4-D], (ii) a minimum temperature of 60 °C that produces sulfate radicals by heat decomposition of persulfate, and (iii) a sufficient contact time between reactants is required under dynamic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.