Abstract

Here, we briefly review possible indirect effects of dark matter (DM) of the universe. It includes effects in cosmic rays (CR): first of all, the positron excess at [Formula: see text]500[Formula: see text]GeV and possible electron–positron excess at 1–1.5[Formula: see text]TeV. We tell that the main and least model-dependent constraint on such possible interpretation of CR effects goes from gamma-ray background. Even ordinary [Formula: see text] mode of DM decay or annihilation produces prompt photons (FSR) so much that it leads to contradiction with data on cosmic gamma-rays. We present our attempts to possibly avoid gamma-ray constraint. They concern with peculiarities of both space distribution of DM and their physics. The latter involves complications of decay/annihilation modes of DM, modifications of Lagrangian of DM-ordinary matter interaction and inclusion of mode with identical fermions in final state. In this way, no possibilities to suppress were found except, possibly, the mode with identical fermions. While the case of spatial distribution variation allows achieving consistency between different data. Also, we consider stable form of DM which can interact with baryons. We show which constraint such DM candidate can get from the damping effect in plasma during large-scale structure (LSS) formation in comparison with other existing constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call