Abstract
Carbon paste electrode (CPE) modified with porous copper based metal organic framework (Cu-MOF) nanocomposite is described for analysis of cyanide (CN−) for the first time. The electrochemical performance of the proposed electrode was investigated by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The Cu-MOF nanocomposite was characterized using scanning electron microscope (SEM), N2-adsorption-desorption isotherms, powder X-ray powder diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Under optimal conditions of measurements, the anodic peak (Ipa) decreases linearly in the range of 1.87–25 μM with LOD of 0.60 μM (at S/N = 3). The Cu-MOF/CPE showed good selectivity towards CN− measurement with no significant interference in pH 7.0 using 0.25 M KCl to increase the medium conductivity and to stabilize the analyte and prevents its volatility. Moreover, the method was successfully applied for determination of CN− in different environmental water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.