Abstract

This Communication describes the indirect detection of 14N nuclei (spin I = 1) in solids by nuclear magnetic resonance (NMR) spectroscopy. The two-dimensional correlation method used here is closely related to the heteronuclear multiple quantum correlation (HMQC) experiment introduced in 1979 to study molecules in liquids, which has recently been used to study solids spinning at the magic angle. The difference is that the coherence transfer from neighboring 1H nuclei to 14N is achieved via a combination of J couplings and residual dipolar splittings (RDS). Projections of the two-dimensional correlation spectra onto the 14N dimension yield powder patterns which reflect the 14N quadrupolar interaction. In contrast to the indirect detection of 14N via 13C nuclei that was recently demonstrated [Gan, J. Am. Chem. Soc. 128 (2006) 6040; Cavadini et. al., J. Am. Chem. Soc., 128 (2006) 7706], this approach may benefit from enhanced sensitivity, and does not require isotopic enrichment in 13C, although the 1H line-widths may have to be reduced upon selective deuteration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call